MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/ G* = = [ ] ω , , .= G*
Na mecânica quântica, o estado do gato, em homenagem ao gato de Schrödinger,[1] é um estado quântico que é composto de duas condições diametralmente opostas ao mesmo tempo,[2] como as possibilidades de um gato estar vivo e morto ao mesmo tempo. O gato de Schrödinger às vezes é conectado à hipótese dos muitos mundos por seus proponentes.[3]
Estados do gato em modos únicos[editar | editar código-fonte]

Em óptica quântica, um estado de gato é definido como a superposição quântica de dois estados coerentes de fase oposta de um único modo óptico[4] (por exemplo, uma superposição quântica de grande campo elétrico positivo e grande campo elétrico negativo):
- ,
onde
- ,
e
- ,
/ G* = = [ ] ω , , .= G* são estados coerentes definidos na base do número (Fock). Observe que se adicionarmos os dois estados juntos, o estado de gato resultante conterá apenas os termos do estado de Fock:
- .
Como resultado dessa propriedade, o estado do gato acima é frequentemente referido como um estado do gato uniforme. Alternativamente, podemos definir um estado ímpar de gato como
- ,
que contém apenas estados Fock ímpares
- .
Estados coerentes pares e ímpares foram introduzidos pela primeira vez por Dodonov, Malkin e Man'ko em 1974.[5]
Comentários
Postar um comentário